Información del autor
Autor Carvalho, Alexandre N. |
Documentos disponibles escritos por este autor (9)
Añadir el resultado a su cesta Hacer una sugerencia Refinar búsqueda
texto impreso
Arrieta Algarra, José María ; Carvalho, Alexandre N. ; Rodríguez Bernal, Aníbal | Taylor & Francis | 2000The authors study the asymptotic behavior of solutions to a semilinear parabolic problem u t ?div(a(x)?u)+c(x)u=f(x,u) for u=u(x,t), t> 0, x????R N , a(x)> m> 0; u(x,0)=u 0 with nonlinear boundary conditions of the form u=0 on ? 0 , and a(x[...]texto impreso
Arrieta Algarra, José María ; Carvalho, Alexandre N. ; Langa, José A. ; Rodríguez Bernal, Aníbal | Springer | 2012-09In this paper we study the continuity of invariant sets for nonautonomous infinite-dimensional dynamical systems under singular perturbations. We extend the existing results on lower-semicontinuity of attractors of autonomous and nonautonomous d[...]texto impreso
Arrieta Algarra, José María ; Carvalho, Alexandre N. ; Rodríguez Bernal, Aníbal | Elsevier | 1998-08We prove existence, uniqueness and regularity of solutions for heat equations with nonlinear boundary conditions. We study these problems with initial data in L-q(Ohm), W-1,W-q(Ohm), 1texto impreso
We analyze the dynamics of a reaction–diffusion equation with homogeneous Neumann boundary conditions in a dumbbell domain. We provide an appropriate functional setting to treat this problem and, as a first step, we show in this paper the contin[...]texto impreso
Arrieta Algarra, José María ; Carvalho, Alexandre N. ; Lozada-Cruz, Germán | Academic Press | 2009-07-01In this work we continue the analysis of the asymptotic dynamics of reaction diffusion problems in a dumbbell domains started in [3]. Here we study the limiting problem, that is, an evolution problem in a \domain" which consists of an open, boun[...]texto impreso
In this work we continue the analysis of the asymptotic dynamics of reaction–diffusion problems in a dumbbell domain started in [J.M. Arrieta, A.N. Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J.[...]texto impreso
In this paper we conclude the analysis started in [3] and continued in [4] con- cerning the behavior of the asymptotic dynamics of a dissipative reactions di_usion equation in a dumbbell domain as the channel shrinks to a line segment. In [3], w[...]texto impreso
Arrieta Algarra, José María ; Carvalho, Alexandre N. ; Rodríguez Bernal, Aníbal | Elsevier | 1999-08-10We prove existence, uniqueness and regularity of solutions For heat equations with nonlinear boundary conditions. We study these problems with initial data in L-q(Omega), W-1,W-q(Omega), 1texto impreso
Arrieta Algarra, José María ; Carvalho, Alexandre N. ; Rodríguez Bernal, Aníbal | Elsevier | 2000-11-20The motivations to study the problem considered in this paper come from the theory of composite materials, where the heat diffusion properties can change from one part of the domain to another. Mathematically, this leads to a nonlinear second-or[...]