Información del autor
Autor Gallego Rodrigo, Francisco Javier |
Documentos disponibles escritos por este autor (27)
Añadir el resultado a su cesta Hacer una sugerencia Refinar búsqueda
texto impreso
In this article we give a condition, which holds in a very general setting, to smooth a rope, of any dimension, embedded in projective space. As a consequence of this we prove that canonically embedded carpets satisfying mild geometric condition[...]texto impreso
Gallego Rodrigo, Francisco Javier ; Giraldo Suárez, Luis ; Sols, Ignacio | America Mathematical Society | 1996-10In this paper we provide a sharp bound for the dimension of a family of ruled surfaces of degree d in P3 K. We also _nd the families with maximal dimension: the family of ruled surfaces containing two unisecant skew lines, when d _ 9 and the fam[...]texto impreso
Gallego Rodrigo, Francisco Javier ; González, Miguel ; Purnaprajna, Bangere P. | Academic Press | 2013-01his article delves into the relation between the deformation theory of finite morphisms to projective space and the existence of ropes, embedded in projective space, with certain invariants. We focus on the case of canonical double covers X of a[...]texto impreso
Gallego Rodrigo, Francisco Javier ; Purnaprajna, Bangere P. | The Academy of Science of the Royal Society of Canada | 2004Le but de cet article est de décrire la classification obtenue dans [GP1] des revêtements galoisiens de degré 4 des surfaces de degré minimal qui sont définis par le morphisme canonique. Cette classification montre que ces revêtements sont ou bi[...]texto impreso
Gallego Rodrigo, Francisco Javier ; Purnaprajna, Bangere P. | American Mathematical Society | 2008-10In this article we classify quadruple Galois canonical covers of smooth surfaces of minimal degree. The classification shows that they are either non-simple cyclic covers or bi-double covers. If they are bi-double, then they are all fiber produc[...]texto impreso
In this article we classify quadruple Galois canonical covers ? of singular surfaces of minimal degree. This complements the work done in [F.J. Gallego, B.P. Purnaprajna, Classification of quadruple Galois canonical covers, I, preprint, math.AG/[...]texto impreso
Gallego Rodrigo, Francisco Javier ; González Andrés, Miguel ; Purnaprajna, Bangere P. | Springer-Verlag | 2010-06-05In this article we study the deformation of finite maps and show how to use this deformation theory to construct varieties with given invariants in a projective space. Among other things, we prove a criterion that determines when a finite map ca[...]texto impreso
Gallego Rodrigo, Francisco Javier ; González Andrés, Miguel ; Purnaprajna, Bangere P. | Cambridge University Press | 2008-03-14In this paper we prove that most ropes of arbitrary multiplicity supported on smooth curves can be smoothed. By a rope being smoothable we mean that the rope is the flat limit of a family of smooth, irreducible curves. To construct a smoothing, [...]texto impreso
In this paper we show that if X is a smooth variety of general type of dimension m?2 for which its canonical map induces a double cover onto Y, where Y is the projective space, a smooth quadric hypersurface or a smooth projective bundle over P1,[...]texto impreso
In this paper, we show that if X is a smooth variety of general type of dimension m?3 for which the canonical map induces a triple cover onto Y, where Y is a projective bundle over P1 or onto a projective space or onto a quadric hypersurface, em[...]texto impreso
Gallego Rodrigo, Francisco Javier ; Purnaprajna, Bangere P. | American Mathematical Society | 1997-06A K3 carpet S is a double structure on a rational normal scroll such that its dualizing sheaf is trivial and h1(OS) = 0. In this note the authors show that every K3 carpet S can be smoothed, i.e. there exists a flat family over a smooth curve w[...]texto impreso
Rodríguez Velasco, Gema de Jesús ; Infante del Río, Juan Antonio ; Benavent Merchán, María Teresa ; Felipe Ortega, Ángel ; Yáñez Gestoso, Francisco Javier ; Gallego Rodrigo, Francisco Javier ; Bru Espino, Antonio Leonardo ; Porqueras Arabolaza, Fernando ; Cimadevilla Rodríguez, Francisco Javier | 2019-06-30texto impreso
Silva Navas, J. ; Montero Risueno, M.A. ; Manzano, C. ; Tellez Robles, B. ; Navarro Neila, S. ; Gallego Rodrigo, Francisco Javier ; Del Pozo, J.C. | American Society of Plant Biologists | 2016Roots normally grow in darkness, but they may be exposed to light. After perceiving light, roots bend to escape from light (root light avoidance) and reduce their growth. How root light avoidance responses are regulated is not well understood. H[...]texto impreso
texto impreso
Gallego Rodrigo, Francisco Javier ; Purnaprajna, Bangere P. ; González Andrés, Miguel | Elsevier Science B.V. (North-Holland) | 2008-05Let Y be a smooth Enriques surface. A K3 carpet on Y is a double structure on Y with the same invariants as a smooth K3 surface (i.e., regular and with trivial canonical sheaf). The surface Y possesses an etale K3 double cover X -> (pi) over bar[...]