Información del autor
Autor Fry, Robb |
Documentos disponibles escritos por este autor (7)
Añadir el resultado a su cesta Hacer una sugerencia Refinar búsqueda
texto impreso
Let X be a separable Banach space that admits a separating polynomial; in particular, let X be a separable Hilbert space. Let f : X -> R be bounded and Lipschitz, with uniformly continuous derivative. Then, for each epsilon > 0, there exists a[...]texto impreso
Azagra Rueda, Daniel ; Gómez Gil, Javier ; Fry, Robb ; Lovo, Mauricio ; Jaramillo Aguado, Jesús Ángel | Oxford University Press | 2005-03We show that if X is a Banach space having an unconditional basis and a Cp-smooth Lipschitz bump function, then for every C1-smooth function f from X into a Banach space Y, and for every continuous function ? : X ? (0, ?), there exists a Cp-smoo[...]texto impreso
texto impreso
Azagra Rueda, Daniel ; Fry, Robb ; Montesinos Matilla, Luis Alejandro | America Mathematical Society | 2004-10-21We show that if Y is a separable subspace of a Banach space X such that both X and the quotient X/Y have C-p-smooth Lipschitz bump functions, and U is a bounded open subset of X, then, for every uniformly continuous function f : Y boolean AND U [...]texto impreso
Let X be a separable Banach space with a separating polynomial. We show that there exists C > = 1 (depending only on X) such that for every Lipschitz function f : X -> R, and every epsilon > 0, there exists a Lipschitz, real analytic function [...]texto impreso
We establish a second order smooth variational principle valid for functions defined on (possibly infinite- dimensional) Riemannian manifolds which are uniformly locally convex and have a strictly positive injectivity radius and bounded sectiona[...]texto impreso
Let X be a Banach space with a separable dual X*. Let Y subset of X be a closed subspace, and f : Y -> R a C(1)-smooth function. Then we show there is a C(1) extension of f to X.