Información del autor
Autor López-Mesas Colomina, Fernando |
Documentos disponibles escritos por este autor (5)
Añadir el resultado a su cesta Hacer una sugerencia Refinar búsqueda
texto impreso
López-Mesas Colomina, Fernando | Universidad Complutense de Madrid, Servicio de Publicaciones | 2004El propósito de esta Tesis es triple. Primero, extender algunos resultados de minimización perturbada, como el principio variacional suave de Deville, Godefroy y Zizler, y otros resultados de localización de puntos casi críticos, como los teo-re[...]texto impreso
Azagra Rueda, Daniel ; Ferrera Cuesta, Juan ; López-Mesas Colomina, Fernando | Elsevier | 2003-07-01We establish approximate Rolle's theorems for the proximal subgradient and for the generalized gradient. We also show that an exact Rolle's theorem for the generalized gradient is completely false in all infinite-dimensional Banach spaces (even [...]texto impreso
Azagra Rueda, Daniel ; Ferrera Cuesta, Juan ; López-Mesas Colomina, Fernando | Elsevier | 2006-11-01We establish a maximum principle for viscosity subsolutions and supersolutions of equations of the form u(t) + F(t, d(x)u) = 0, u(0, x) = u(0)(x), where u(0): M -> R is a bounded uniformly continuous function, M is a Riemannian manifold, and F:[...]texto impreso
Azagra Rueda, Daniel ; Ferrera Cuesta, Juan ; López-Mesas Colomina, Fernando | Elsevier | 2005-03-15We establish some perturbed minimization principles, and we develop a theory of subdifferential calculus, for functions defined on Riemannian manifolds. Then we apply these results to show existence and uniqueness of viscosity solutions to Hamil[...]texto impreso
Azagra Rueda, Daniel ; Ferrera Cuesta, Juan ; López-Mesas Colomina, Fernando ; Rangel, Y. | Elsevier | 2007-02-15We show that for every Lipschitz function f defined on a separable Riemannian manifold M (possibly of infinite dimension), for every continuous epsilon : M -> (0, + infinity), and for every positive number r > 0, there exists a C-infinity smoo[...]